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The two standard literature definitions of the function associated with the 
Feigenbaum attractor are not equivalent. The method due to Vul et al. and 
Feigenbaum is used to calculate the Haussdorff dimension of the Feigenbaum 
attractor, using as input the trajectory scaling functions. The two calculations 
yield the same Hausdorff dimension D = 0.5380451435 to within the accuracy of 
the computation. 
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1. I N T R O D U C T I O N  

The Feigenbaum attractor is a fractal object for which the Hausdorff 
dimension and generalized fractal dimensions have been computed by a 
variety of methods. (1-8/ In this article I will describe in some detail a new 
method due to Feigenbaum (4) to carry through these calculations based on 
the thermodynamic analogy of Vul et al. (1~ The preliminary results of the 
calculation have been reported elsewhere. (8~ 

I will also show that the different constructions given in the literature 
are not equivalent, even though they lead to identical values for the fractal 
dimensions. For the sake of illustration a set of new constructions is 
introduced that provide an interpolation between the two. 

2. T H E  F E I G E N B A U M  C O N S T R U C T I O N  (3) 

A pictorial illustration of this construction is given in Fig. 1. 
Here I briefly restate the original construction of the period-doubling 

attractor given by Feigenbaum. (31 Consider a family of unimodal maps on 
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the interval, fp(X), that  goes through a series of period-doublings as the 
parameter  p is varied. These maps have one critical point, and if a periodic 
orbit  includes this point, it is said to be superstable. We let the parameter  
Pi be the value of p for which the system has a superstable T-cycle; i.e., Po 
indicates a superstable fixpoint, Pl indicates a superstable 2-cycle, P2 a 

Fig. 1. 
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(b) 
The Feigenbaum construction. (a) Level O, one interval. (b) Level 1, two intervals. 
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superstable 4-cycle, etc. These values accumulate at a value p ~ ,  with 
asymptotic convergence as 6 ", 6=4.6690216 . . . .  At p~  we have a 
"2~-cycle, '' and by the Feigenbaum attractor we mean the set of points 
generated by successive iterations of the critical point at this parameter 
value. 

Consider now the following construction of a Cantor-like set: at level 
m the interval A(o m) is the interval 

A(o m)= [ -  Iffi~+l(0)], + ]f~m+l(0)t] (2.1) 

The j th interval Ay ") is then fr l(A(om)) . We have 

A(m)~ f2mm+ l(A~n)), AJ")= f2m+ l(A} ",) 

To every interval A] m) at level m we associate two intervals on level 
m +  l" A] m+ l) and .(re+i) Notice that A} re+l) and ~/+:,. ~j+2 m . A(m+l) need not be sub- 
sets of A} m), as is obvious i f f p ( x ) = p -  x 2 and one considers A ~m+ 1)versus 
AIm). TO every interval zJ} m) there is thus associated a unique sequence of 
intervals, such that every interval in the sequence has a unique predecessor. 
If j =  i12 m 1 + i22m-2 + ... + im ' ir = 0, 1, these intervals are, in level one, 
the interval number im, in level two, the interval number im_ 12 + im, in 
level three, the interval number i m 24+i, ,_12+i, . , ,  , etc. As m--* oc, the 
number of intervals grows as 2 m and converges to the orbit of fp~(0)  in the 
following sense: let {x(j)}~' be a sequence of numbers such that x( j )k  
belongs to the kth interval in the chain associated with zlj(. m). Then 

Iffpo~(O)-- x(j)ml 

~< max{ I/r + 1(0)1, ]fr - fr 2+~(0)1 } 

~< Ifp2g +'(0)1 ~ I 1/c~1 m +1 (2.2) 

where ~ = -2.5029...  is the Feigenbaum constant. 
Now introduce the directed length d} m) of the interval A}") defined as 

dJm)--fJm+ 1(O) - -  J~m+ 2m1( 0 ) (2.3) 

and extended to all j with the convention ~j'/(m)+ 2" = --d} m)" 
The quotient 

( 7 ( m - 1 ) ( j / 2 m + l ) -  d}m)/@m l) (2.4) 

is the Feigenbaum trajectory scaling function, which we proceed to study. 
Let d] "z- 1) be an interval far from zero in the sense that 

14m--~) ~ [ffim(O)l 

822/47/3-4-10 
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Then 

Hence 

(m-- 1) @+1 =Lm(fJpm(O)) J+2m--I - -  f pm( f fpm ( 0 ) )  

= fp,~(fjpm(O))__ fpm(fjm(O)__d(m 1)) 
, y ~ f;m(fr dJ m-.~ (2.5) 

a(m - 1)((j + 1)/2 m + 1) = d ) + ) l / d ( + l  1) 

,~ { f p m + l ( f J m + l ( O ) ) / f p m ( f J p m ( O ) ) } f f ( m - - 1 ) ( j 2 m + l  ) (2.6) 

In the limit m--* oo the factor in front goes to one, so in that limit, 
scaling only change upon close passage to the origin. Consider therefore 
the scaling functions a (m+k 1)(j.2k/2m+k+l), and k very large. We can 
now make use of Feigenbaum universality(3.9): 

~fp2~m+k(X/~k)-*l~rgm(x/IXr) as k ~  oo (2.7) 

c~ = -2.5209.. .  is the period-doubling constant, gm is a universal function, 
and #f is a scale depending on the function family fp(x). One sees from the 
definitions that g m ( X )  o w n s  a superstable 2m-cycle and that the functions 
gm satisfy a recursion relation; o~g m o gm(x/c 0 = g m  l ( X )  �9 We also have 

fF+~(O] _ r2,o+l + l) oo , - - , - - J p o o + ( m + l ) ( O ) - - - ~ ( 1 / O ~ m  l~rg(O) 

where g satisfies the Cvitanovi6 Feigenbaum functional equation: 
:~gZ(x/cO = g(x). We have 

~ k f j 2  k ~(]/~tk~ ~kfj2k+2k+m~(]/ k~ 
a(  m + k  l ) ( j 2 k / 2 m + k + l  I - -  J p m + k + t t w  ~ l - - ~  J p m + k + l \ V / O ~  l 

1 - -  o~k~j2k [(~/~tk~ mkfj2k+2k+m-l[(~/~vk~ 
J p m + k t V l  ~ I - ~  J p m + k  ~,~1~ ) 

j j + 2  m 
I~/'gm+ ~(0) - -  ] ~ f g m +  l (0) 

k 2oo /~rgJm(O)_ /xrgJm+ 2"-'(O) 
= g L +  1(o) - g ~ +  ,((11~ m) g,(O)) 

(2.8) 
g J ( 0 ) - - g J ( ( 1 / ~  m 1 ) g l ( 0 )  ) 

The normalization of the function family is conveniently chosen such that 
gl(0) = 1, and so 

a(j/2m+ l) = l i m a  (m+k+ ~l(j2k/2m+k+ ~) 
k ~ oo 

g~+ 1(0)_ j m __ g m + l ( 1 / O ~  ) 
- g~(O)_g~(1/c~m 1) (2.9) 
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The function a( j /2  re+l) is a universal function and gives the 2 m+l 
values at which the original scaling function 0 ( m + k  l ) ( i /2m+k+l)  changes 
the most  as k ~ oo. One can therefore regard it as the values at 2 m+l 
points of the full asymptotic scaling function a(t) .  If we extend the function 
a(j/2m+ 1) to the line between the points j / 2  m + i, as a piecewise constant 
function of t, we have the approximation to a( t )  in level m. 

Now express j as j = io 2'~ + il 2 m 1 + . . .  + im ==_ (io, il ..... im); ir = O, 1. 
The complement of 1 is 0 and vice versa. Then 

gJm(O) . . . .  g~o  g~-~2~ g~_222 . . .  gmi~ 

im o = gm(1/~)  c~g~-Z2~(1/C~) o (1/CQ o (C~ 2) g~ 222(1/e2) 

~ ( ~ / ~ ) ~  ' ~ ( ~ )  gmJ~ 

= g~(1/cQo '~ ' g~ ~(1/~)o .- og~(0) (2.10) gin-- 1(1/C~) ~ Sm-2 

If we introduce the notation 

A(i l  ..... i m )  = g ~ ( l / o ~ )  0 6m-~ 1 / ( ~ )  O " ' '  o g~l(0) ( 2 . 1 1 )  

we can write in a compact  form 

A(io,  il ,..., i m ) -  A(i'o, il,..., im) 
a(io, il,... , im)= (2112) 

A(ia ,  i2,..., im) - -A( i ' l ,  i2 ..... im) 

where i~ is the complement of i o and i'1 is the complement of i I. The 
notation shows that to calculate any component  of the mth level 
approximation to a( t )  we need at most m + 1 functional compositions, and 
not, as it would seem, 2 m. Furthermore,  each of these compositions acts on 
an argument close to zero where the absolute value of the derivative is less 
than one, and so errors do not build up. The error in A is thus roughly 
proport ional  to the error in the determination of the function applied last, 
gm(X) (provided im= 1). 

The functions G(j/2  m+ 1) converge uniformly to a(t). The function a( t )  
suffers a discontinuity on every dyadic rational and we denote by 
a(io,..., im, + )  the value of a immediately after the discontinuity at 
J= ( io , - . - ,  im)" It  is straightforward to derive the following statements. 
(Derivations are given in Appendix A.) 

A. 2--(m+1){0"(i o ..... i m , + ) - a ( i o  ..... ira)}---*0 as m ~ o o  if i m = l .  
That  is, the jumps go to zero exponentially faster than the distance between 
the jumps. 

B. 2-(m+l/{a(io ..... Ue ..... im, 1 } - - a ( i o  ..... i~,... ,im, O ) } ~ O  as m ~ o o  
if c~ k ~> 2 m, k ~> m(log 2/log e), where i~ is the last index in the sequence that 
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is different from zero. The numbers that do not have this kind of binary 
expansion have measure zero and so the function a is both right con- 
tinuous and right differentiable almost everywhere with (d/dt +) or(t)=0 
almost everywhere. 

C. 2-~m+2/{a((2j - 1)/2m+2) - a(2j/2m+2)} --*0 as m--* oo regardless 
of j. Hence, the function ~(t) is everywhere left continuous and left differen- 
tiable with (d/dt- ) a(t) = O. 

D. If we approximate cr(t) at level m on the interval [j/2 m+l, 
j + l / 2  m+l] either as cr(j/2 m+l + )  or as a(( j+l) /2m+l) ,  the average 
change as we introduce the next level, m + 1, behaves as a sequence with 
two transients, roughtly as 

2 ( m + l ) {  2 o~(m+1)(o~l)n(i~ 
(tO ira) 

= 2  (m + 1)(~--1 ..~_ ~ -- 2)m ~_ (~ --m 

~ ( - 8 )  ~+  6-" 

n(io,..., ira) is the number of zeros in the sequence (io,..., ira). 

3. T H E  C O N S T R U C T I O N  OF V U L ,  S INAI ,  A N D  K H A N I N  (1~ 

A pictorial illustration of this construction is given in Fig. 2. 
We will consider the following construction of a Cantor-like set: at 

level m the interval J~o m) is the interval 

2~o m~ = I - - I f ~ ( 0 ) l ,  I /~(0)1  ] (3.1) 

The interval z](m~ is then Jpoot~o rj (~(m)~j. We have that 

~(o m) D f2p2(2(om) ) (3.2) 

To every interval ]~m) there are now associated two subintervals; 
A'j(.m + 1) and --j~'(m+l)+ 2" . These intervaals clearly converge to the orbit of 0 at 
p = p~ .  We can introduce directed lengths of these intervals and scaling 
functions as quotients between lengths of intervals and arrive at a universal 
scaling function 

aVSK(j/2m+ 1) __ gJ(O) -- gj+2m(0)  
gJ(O)-- gj+2m '(0) (3.3) 

Here g is the universal function satisfying the Cvitanovic'-Feigenbaum 
functional equation. The standard normalization is g (0 )=  1, as in the high- 
accuracy approximation of g given by Lanford. ~ 
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Fig. 2. 
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The construction of Vul et al. 
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If j =  i02m+ i l  2m l q_ . . .  q_ im and we use the notation 

B(io ..... im) = girn(1/O~)o g im l ( 1 / ~ ) o  " ' "  o gi0(0) (3.4) 

we may write in a compact  form 

rrVSK(i0 ..... ira) = B(io ..... i m ) -  B(i'o ..... ira) (3.5) 
B(i~ ..... i ra)-  B(i'~ . . . . .  im) 

where i; is the complement of i o and i' 1 is the complement of ii. 
All the statements concerning the functions A and ~ in the last section 

carry over on the new functions B and ~VSK, the only difference being that 
this time there are no factors 0 (6  m). The construction with cr converges 
down the unstable manifold to the fixpoint of the period-doubling 
operator, while the construction with eVSK converges transversely along the 
stable manifold. Therefore, we have the full equivalence of the statements 
A, B, C, and D, and for D we can make the stronger statement that the 
average change in aVSK(t), as we introduce level m +  1, behaves as 
[(1/2:z)(1 + 1/(x)]m ~, ( - -8 )  -m, no corrections coming from 0 (6  m) terms. 
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4. THE N U M E R I C A L  EVALUATION OF THE SCALING 
F U N C T I O N S  

As the scaling functions a and a vsK are given by analytically different 
expressions, there is no a priori reason to suspect that they are identical. To 
compare, one need to compute numerically the functions gl ,  g:,-.., g o  = g 
with the same normalization. This is done by solving the functional 
equation of Vul et al. for the function family gp(X) and the constants c~ 
and c5,(lo) 

gp(X ) = o;g I + p/6 O g l + p/a(x/~ ) (4.1) 

with normalizations 

go(0) = 0 

g2(0) = 0  

g l (0 ) =  1 

(superstable fixpoint) 

(superstable 2-cycle) 
(these fix the origin and set the scale in the variable p) 

(sets the scale in the variable x) 

The function gi(x) is defined as gp(X) at the parameter value for which 
the function has a superstable 2P-cycle; Pi = {(1 - (1/6)i)/(1 - (1/cS))}. This 
functional equation has a stable fixpoint which is the unstable manifold to 
~he functional equation of Cvitanovic' and Feigenbaum. Numerically this 
can be solved by iteration of the transformation and truncation. 

I solved it using a 4 0 x 4 0  matrix representation of the expansion 
gp(X)=Y' .gi ipix  2j to accuracy better than one part in 10 11. This is then 
about the accuracy to which I can calculate a on rationals with short 
expansions in base 2. 

One then finds (Fig. 3) that though the two scaling functions as expec- 
ted agree close to t = 0  and t =  1/2, they differ around t =  1/4 [ a (1 /4 )=  
0.1752 .... but aVSK(1/4)=0.1722 .... and a ( 1 / 4 + ) = 0 . 4 1 9 0  .... but 
aVSK(1/4 + ) =  0.4240...], and around every other dyadic rational. 

5. FURTHER C O N S T R U C T I O N S  

One can construct family of scaling functions in the following way: 
On level m let the interval A(o m) be the interval 

d(o m) = [ --Ifp2~+N(0)l; ]fp2m + u(0)l ] (5.1) 

and Aj(m~ --]pm+N*,~O-- lcJ (A(m)]~. Now everything follows as before and one finds a 
universal trajectory scaling function 

aN(j/2,,, + 1) _ g~,+u(O)--gJm+X(C~ "~gu(0)) 
j l (O)__gm+ N 1( ~ m + l g x ( O )  ) (5.2) gm+N 
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choose the normal iza t ion  gN(0) = 1 and introduce for Here  we 
j =  (io ..... ira) 

A N ( i o  . . . . .  i m  ) i m 1 " " = g N + m  O~ ~ " ' ~  g ~ v + ,  ~-1~  g~r(0) (5.3) 

We can then write 

�9 ~AX(i~ i m ) -  AU(i'o,..., ira) (5.4) 
~TN(i0,..., 

lm)=A~(il,..., im)-- AU(i'l,..., im) 

Obvious ly  A ~ = A, a~ = ~ (the Fe igenbaum construct ion) ,  and  A ~ = B, 
a ~ = a  vsK (the Vul, Sinai, and  Khan in  construct ion) ,  so these scaling 
functions provide  an in terpola t ion between the usual ones. 

6. F R A C T A L  D I M E N S I O N S  A N D  S C A L I N G  I N D I C E S  

In this section I calculate the generalized fractal dimensions of the 
Fe igenbaum a t t rac tor  f rom the t ra jectory scaling functions. The  formula  
for the fractal d imension (s'6) with index q, Dq, as the limit as m ~ oe of a 
sum over  intervals i on level m with lengths li and probabal i t ies  Pi 

2m~(pi)q_(li) ~ 1; r q = ( q - 1 ) D q  (6.1) 
i=0 

can be rewrit ten following Vul et al. ~1~ and Fe igenbaum (4) as a par t i t ion 
function over  a 1D spin system. N a m e l y  choose,  as is natural ,  the intervals 
to be AI m) which all have weight 2 - %  F ( f i ) = - q ,  f i = - r q ,  and 
W(i) = - l n  Idlm)l. 

Then  

2-"Fm(fl)= ~ e-flw(i); i= (io,... , ira) (6.2) 
(io,...,im) 

F ( f i ) =  lim FN(fi) (6.3) 
N~oo 

N o w  

Id]'~)[ ~ la(io ..... im)l Id] m 1)] ~ la(io ..... im)['' 'la(im, 0,..., 0)[ [d~o ~ (6.4) 

The interact ion potent ia l  W(i) of the spin configurat ion i =  (io,..., ira) 
can be divided into interact ions between neighbor ing spins, next -neighbor  
spins, and so on. Due  to p roper ty  D of a and a vsK this interact ion 
decreases exponent ial ly  with distance, so one knows  from general theorems 
in statistical mechanics  (1~ that  in the limit as m ~ oe, F(fl) is a smooth ,  
monotonica l ly  increasing function of ft. 
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The 2 m +l elements in the mth-level approximation to a thus build up 
a 2 m 1 x 2 m- 1 transfer matrix (the first bit in the address only contributes 
a sign, so it does not enter): 

T o , ( / ~ )  = 

I~(0, O, 0,..., 0)1 ~, I~(0, O, 0,..., 1)1 ~, 0, 0 . . . .  

0 0 
: 

l~(O, l ,O ..... o)1 n , l ~ ( o , l , o  ..... 1)l n , o , o  . . . .  

0 0 

: ..., O, O, I~(0, 1, 1 ..... O)l #, 1~(0, 1, 1,..., 1)l ~ 

(6.5) 

As m ~ oo, we have F ( f l ) = - l n  2(#)/ln 2, where 2(fi) is the largest 
eigenvalue of Tm(#). As pointed out by Feigenbaum, (4) it is obvious that 
just a part of the structure of a enters the quantity F(fl). Suppose one is on 
level 2 and reads the binary address of an interval 

i = ( i o  ..... 0, 1,0,  1, 0, 0, 0,..., im) 

Then the substrings 01 and 10 occur on opposite sides of a block of 
l's, so asymptotically they occur with equal frequency. Therefore the 
scaling functions a(0, 1) and a(1, 0) only enter through the combination 
0(0, 1)0(1, 0). Similarly, on level 3 there are only five independent quan- 
tities entering F(/?), as the substrings 001 and 100, as well as 011 and 110, 
occur with equal frequency. Furthermore, there is a relation 
f ( 1 0 1 ) - f ( 0 1 0 )  = f ( 0 1 1 ) - f ( 0 0 1 )  between the frequencies of occurences of 
substrings, which brings the number of independent components down to 
five. 

There is thus an explicit way to calculate Dq given a, and from Oq one 
can calculate their Legendre transformations, the scaling indices of Halsey 
et al. (6) 

7. N U M E R I C A L  RESULTS A N D  C O N V E R G E N C E  

Let tim be the value of/~ for a predetermined F(/~), that is, q, calculated 
with the m-level approximation to o-. The rate of convergence of tim to tim 
can be estimated as follows: We want to find A#m, the change induced in/~ 
as we go back to level m -  1. In the transfer matrix, to move back to level 
m -  1 means setting all second entries in every row equal to the preceding 
entry. We call that matrix T2(/?), Tin_ 1(/?) exxpressed in the form of Tm(/~). 
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Table I. The Hausdorff  Dimension from the 
Feigenbaum Construction Levels 2-9 

0.535153405353073130 
0.537867957190712837 
0.537929308470491418 
0.538033608239975927 
0.538040372358731812 
0.538044516455052273 
0.538044941165327028 
0.538045111940850554 

Let ~R and ~Lbe the eigenvectors to the right and to the left 
corresponding to the largest eigenvalue of Tin(tim). Then, to first order 

(7.1) 

We want to find Afire SO that 62(/~)= 0, which to first order implies 

Aft,,, (~LI T ' ( 1 ) -  Tin(l)I~R) 
- - ~  (7.2) 
tim (~LI In Tin(l)I~.R) 

Hence, asymptotically A/? is proportional to a weighted average of the 
changes in ~r. Therefore the sequence /~m should converge to the asymptotic 
value/~ as a sequence with overlayed geometric transients. This is also what 
one finds numerically. As the sequence converges geometrically, one may 
use the method of Shanks' transformations (12) to improve the estimate of 
the asymptotic value. 

Successive approximations to the Hausdorff dimension D o are given 
for a in Table I and for a vsK in Table II. Convergence is alternating and 
faster for ~r vsK than for a, but both converge geometrically. Using the 

Table II. The Hausdorff  Dimension from the 
Construction of Vul e t  al.,  Levels 2-9 

0.537843517840060446 
0.538103284698562080 
0.538037608949288779 
0.538046713784606500 
0.538044902913195324 
0.538045188263181811 
0.538045136242254450 
0.538045144882801222 
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method of Shanks' transformations, we have the following estimates for the 
asymptotic values: 

Do = 0.5380451435(1 ) from cr vsK (7.3) 

Do = 0.53804514(1 ) from cr (7.4) 

The result (7.3) agrees with the calculations of Bensimon et al. (7~ and 
matches the first ten digits in the latest results by Grassberger. (18) 

As one calculates higher order approximations to or, cancallation 
errors enter as the lengths of the intervals asymptotically get exponentially 
small. Therefore there is an upper limit to the number of levels one might 
calculate from a given expansion of g(x) o r  gp(X). For the expansion of 
g(x) given by Lanford, which is accurate to one part in 10 3o, one is 
limited to roughly the 15th level. The calculations in this paper were all 
carried out, approximating or(t) at level m on the interval [j/2 m+~, 
( j  + 1 )/2 m + 1 ] as a(j /2 m+ 1 + ), to level 9. 

One may show (a derivation is given in Appendix B) that the 
quotients Idlnl/~ll~)[ between intervals given in the two constructions 
introduced in Sections 2 and 3 stay bounded as the level index n tends to 
infinity. Hence the largest eigenvalue of the two transfer matrices must be 
the same and all generalized fractal dimensions agree. 

9. C O N C L U S I O N  

Three points have been raised in this paper. The first is that fractal 
dimensions and scaling indices for the Feigenbaum attractor are 
straightforward to calculate if the trajectory scaling function is known. It is 
sometimes asserted (v) that fractal dimensions deal with the global structure 
of the attractor as opposed to the local character of the scaling function. 
However, such a remark misses two important points. First, the fractal 
dimensions are static quantities attached to an ordering of the atractor in 
space (a boxing algorithm essentially), while the scaling function is a 
dynamic quantity ordered in time. In the limit of a 2~-long cycle, every 
finite portion of ~(t) coresponds to infinitely many iteration points scat- 
tered all over the attractor, and due to the continuity properties of a, essen- 
tially every value of a is attained everywhere on the attractor, a is thus as 
nonlocal in space as can be. Second, the fractal dimensions follow from an 
averaging that disregards most of the information contained in a. If such 
an averaging is not performed, the local scaling indices, (6) or pointwise 
fractal dimensions, (15) as function of position are much worse functions 
than or, since they are discontinuous on a dense set with all discontinuities 
of order unity. The second point raised is that the two usual constructions 
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given in the literature are not equivalent. The third point is that the 
Hausdorff dimensions calculated from the two constructions agree to seven 
orders of magnitude better than the scaling functions from which they have 
been calculated, and that all fractal dimensions of the two constructions do 
in fact agree. 

A P P E N D I X  A 

The function a( t )  has discontinuities on all dyadic rationals, that is, on 
all points j /2  m + 1. The value of a immediately after the discontinuity is 

~(j/2m+1 + ) / ~  a ( j ' 2 ' +  1)/2 m+'+l 

A(io, . . . , im, O, O,..., 1 ) -A( i ' o , . . . , im ,  O, O,..., 1) 

A(il , . . . ,  im, O, O,..., 1 ) -  A(i'l,. . . ,im, O, O,..., 1) 

g ' + l + l ( 0 )  (A(io ..... ira)) 2 -  (A(i'o ..... ira)) 2 
g"  +l(0) (A( i l  ..... i m ) ) Z - ( A ( i ' l  ..... im)) 2 (A1) 

where the prefactor goes to one as l ~ ~ .  Hence 

r m +1 _]_ ) _ a ( j /2  m + 1) 

= a ( j / 2 m + l ) F A ( i o  .... im)+A(i 'o , . . . , im) 1 
k A ( i l  ,..., ira) + A(i'l ,'", ira) 1 

~( j /2  m + 1) 

=A( i l , . . . ,  im)+ A(i'l,..., im) { [A(i~ i m ) - - A ( i i  ..... im)] 

+ [A(i'o ..... im) + A(i'l ,..., im)] } (A2) 

If the string (i0, il,-.., im)  ends with a tail of zeros, then these last bits 
will not contribute to the value of the discontinuity, as the s  to the end 
will cancel between the numerator and the denominator. Therefore we 
a s s u m e  i m = 1 and consider how the differences in the numerator change as 
we read bits from in up to im,  i, being a bit in the string below i m. For 
simplicity we assume that in = 1, and only consider the first difference in the 
numerator. 

We therefore start with the difference A(io,... , i n ) - A ( i  I ..... in). It is 
certainty less than 

g , + ~ ( O ) - g n ( ( 1 / ~ ) g ,  ~ ( O ) ) ~ g ( O ) - g ( ( 1 / ~ ) g ( O ) ) + O ( &  n) (A3) 

With the normalization g l (0 )=  1, the expansion of g is given by 

g(x )  ~ 1.365018 -- 1.119132x 2 + 4.121082 x 10 2X4 -~ " ' "  



Metric Properties of the Feigenbaum Attractor 

Approximately, then, 

g(0) - g((1/~) g(0)) = 0.3290... 

Hence A(io,... ,  i n ) -  A(i l , . . . ,  in) can be considered small. Then 

A(io ..... in, in+ l ) -  A ( i l  ..... in, in+l)  

.~ g{(1/c0 A( i l  ,..., in) + (1/cO[A(io ..... i , )  - A ( i l  ..... in)] } 

- g ( ( 1 / c r  A ( i  I ,..., in) ) + 0 ( ~  - n -  l )  

g'((1/cQ A(  il,..., i , )  ){ (1/cO[ A (  io,..., i n ) - A ( i l , . . . ,  i .)]} 

+ (1/2)g"((1/c~) A( i l  ..... in)) 

x { (1 /a)[A( io , . . .  , i , , ) - A ( i l , . . .  , i~)]}2 + .. .  + O(c~-n) 

= (1/cQ[A(io,. . .  , i n ) - A ( i l , . . . ,  in)] 
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(A4) 

if in + l = 1 

if i n + l = 0  

(AS) 

0.927... ~< g'((1/~) A( i l  ..... in)) ~< 1.23... (A7) 

Hence the term linear in {(1/c~)[A(io,.. .  , i n ) -  A ( i l  ..... in)] } is multiplied 
by a term close to 1, as is the quadratic term, 

I(1/cQ[A(io,.. . ,  in) - A ( i l  ,..., in)] ~< 0.15... 

and therefore the quadratic and higher terms may be neglected. 
Now consider 

A(io ..... in, in+l ,  in+ 2 ) -  A(i l , . . . ,  in, in+l ,  in+2) 

If i n+l is 1, the analysis goes through as in the preceding step, the only 
difference being that the approximations are better this time. We would 
then have that 

A(io ..... in, in+ 1, in+2) -  A(i, , ,  i,,+ 1, in+2) 

(c~-2[A(io,..., i , ) - A ( i l , . . . ,  i ,)] (A8) 

The difference is small by another factor ~-1. 

o r  

g'((1/~) g((1/c 0 g(0)) ~< gl((1/c~) A( i l  ..... in)) ~ g'((1/cQ g(0)) (A6) 

If in+ 1 =0,  A(io,... , in, i n + l ) - - A ( i l , . . .  , in, in+l)  is additionally small by 
a factor ~ 1. If in + 1 = 1, this is almost true as 
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If, on the other  hand, i ,+1 is zero, 

A(io,..., i , ,  i ,+1,  i ,+ 2 ) -  A ( i  I ..... i , ,  i ,+ ~, i ,+2)  

g ' (a  2A(i l  ..... i , ) ) { a - 2 [ A ( i o , . . . ,  i , ) - A ( i l , . . . ,  i , ) ]}  

+ (1/2) g"(a  2A(i~ ..... i , ) )  

x {a-2[A(io, . . .  , i , ) - A ( i  1 ..... i , ) ] } 2 +  . . .  + 0 ( 3  n) 

= a 2[A(i  o ..... i , ) -  A ( i l  ..... i , ) ]  

if i, + 2 = 1 

if in+2=0 

(a9)  

It is clear that  the quadrat ic  term can never become dominant ,  so we 
discard it here also. 

It should now be clear how to proceed up to im : for every step the dif- 
ference is smaller by a factor ~-1; if i k = 0, we get an addit ional  factor ~ 1. 
Hence we deduce A. 

We now consider the change in a as we introduce the next level 
approximat ion,  that  is, differences of the kind 

a(io ..... im, 1 ) -- a(io,..., im, O) 

A(io ..... ira, 1)-A(i~)  ..... im, 1) 

- A ( i l , . . . ,  i , , ,  1)--  A(i'I ..... im, 1) 

A ( i  o ..... i,,, O) -- A(i'o,..., im, O) 
(AlO) 

A(i~ ..... i,,, O ) - A ( i ' l  ..... im, O) 

F r o m  above we know that  A(i'o,..., i r n ) -  A(io ..... im) and 
A(i '  1 ..... i ra ) -  A(i~,..., ira) are small at least by a factor  a-re. Hence 

(7(io,... , im, 1)--  a(i  o ..... im, O) 

r 1 .r . t  g (~ A(to ..... im) ){~-~EA( io  ..... i m ) - - A ( l o  ..... im)]} 

+ (1/2) " 1 ', --~ ", g (~ A(to ..... im)){~ [A(io,..., i m ) - A ( t o  ..... im)]} 2 

+ . . .  + m)) 

. . . . .  . . . . .  ira)]} 

+ (1 /2)g"(~- 'A( i~ l , . . . ,  im)){~ ' [A( i l , . . . ,  i , , ) - -A ( i ' l  ..... im)]} 2 

+ . . .  + " ) )  

A ( i ~  im)--  A(i'~ ..... im) ( A l l )  
A( i l  ..... im)- -  A(i'i ..... i,,) 
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If we keep in mind  that  the sequence (io,.--, ira) should not  have a long 
tail of zeros, we have 

6( io , . . .  , im, 1 ) - -  a(i  o ..... im,  O) 

a( io , . . . ,  im,  O) ( - -  1 ~- 0 ( 3  m))  

g (~ A(to,..., ira)) 1 + (1/2) " i . t  

t 1 . t  g (~ A(to ..... im)) 
• 

{7 ' [A( io  ..... i , , ) - A ( i ' o  ..... im)] })  

g ( ~  A ( t l  . . . . .  im) )  1+(1/2) " - '  ' 

t - - 1  .! g (~ A(ll , . . . ,  ira) 
{o~ l[A( i l , . . . ,  i m ) - A ( i ' l  ..... i ra ) I})  

a(io,..., i,,, O) 
1 g"(~ 1A(il,..., im)) 

2~ g ' (e  IA(i'l,..., ira) ) 

x [a(io,... , im, 0 ) - -  1 ] [A(il,. . .  , im)--A(i ' l , . . .  , ira) ] 

+ 0 ( 6  m) (A12) 

If the sequence (io,... , ira) has a tail of zeros, it does not  contr ibute  as in 
the former  case. 

Hence a(io,..., ira, 1 ) - a ( i o  ..... ira, 0) behaves asymptot ica l ly  as 
G(i  o ..... ira, + ) - -  G( i  o ..... im) and we m a y  deduce B. 

We now consider differences of  the type a(io,..., im,  + ) - -  ~( io , . . .  , ira, 1 ). 

If  i m = 1, we have f rom above  that  this quant i ty  is small as ~-m~nIi/, where 
n(i) is the n u m b e r  of zeros in the sequence i =  (io,..., ira), SO we assume that  
the sequence has a tail with zeros, and can be writ ten (io,..., ik, 0,..., 0, im) ; 

ik = 1 ; Jk + 1 . . . . .  i m = 0. Then  

o-(io ..... ik, 0 ..... i m,  + ) -- a(io ..... im, 0 . . . . .  ira, 1 ) 

= lim a(io ..... i~, 0 . . . . .  ira, 0, 0 ..... it = 1 ) 

- -  a ( i o , - - - ,  ik, 0 ..... im, O, 0,..., il = O) 

_ _  cr  ( 0 ~  l + k ~ l - r  gt+i(~  t+~A(io ..... ik)) ~t+l~ AUo ..... ik)) 

g,(~ '+~A(i~,..., ik) ) -  g,(~-'+kA(i '~, . . . ,  ik)) 

g m  + 2 ( ~  m - l + k A r  , 0 ..... i k ) )  g m + 2 ( ~  - m  1+kA(i'o ..... i k ) )  

gm+l(a  m - ~ + k A ( i l , . . . , i k ) ) - - g m + , ( ~  m 1+kA(i, 1 ..... ik)) 
(A13) 
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We expand  all a rguments  a round  x = 0 and find that  the difference is 

~ a ( i o  ..... im, + ) { 1 -  [ g ' + 2 ( O ) / g ' + ~ ( O ) ]  

X [1 + (1/12)[g'~'+2(O)/g;~+2(O)]((C~-m-l+k)2{ [A(io,..., ik)] 2 

+ [A(i'o ..... i k ) ] 2 } ) -  (1 /12)[g~ '+  ~(O)/g'~+ 1(0)] 

X ((Ct m l+k)2{[A(i1,. . .  ' i k ) ] 2 +  [A(i'l,..., ik) ']2})]} 

~ a(io,..., i~, + ) [O(6--m) + ( l / 1 2 ) [ g 2 ' +  ~(O)/g~ + ~(0)] 

X ((0r -m ' + k ) 2 { [ A ( i  o ..... i,)32 
- [A( i l  ..... i~)]2 + [ A ( i ' o , . . . ,  i~)]2_ [ A ( i ' ~ , . . . ,  ik)]2})] (A14) 

and so the tail of zeros contr ibutes  as any other  subsequence of zeros. We 
consider differences of the kind a(io,... ,ira, 1, + ) -a ( io , . . . ,  im, O, + ). 
However ,  f rom above  we know that  

cr(io,..., i~, 1) ~cr( i  o ..... ira, + ) =  ~(io,..., ira, O, + )  (A15) 

and 

e(io,..., im, 1, + ) ~ a(io,..., ira, 1) (A16) 

where ~ means  that  the differences are small as ~--m(~--l)n~0+O(6 m) 
regardless of the sequence. Hence  the first par t  of  D. 

Similarly, if one considers differences of the kind a(2j/2m+2) - 
~ ( ( 2 j -  1)/2m+2), one knows  that  

a ( ( 2 j -  1 ) / 2 m + Z ) ~ a ( ( 2 j - - 2 ) / 2 m + Z ) ~ a ( 2 j / 2 m + 2 )  (A17) 

Hence C and the second par t  of D. 

A P P E N D I X  B 

Consider  

A( i l  ..... iN)- -  A( i '  ~ ..... iN) 

B( i l '  I ] ] '  i N ) -  B(i'l ,..., iN) 
(B1) 

If the sequence (i 1 . . . . .  iN) ends with a series of zeros, (il,-.., iN)= 
(il,..., i~ = 1, 0 ..... 0), then 

A(i l  ..... i N ) -  A(i'l ..... iN) 

B(il, . . . ,  i N ) -  B(i '  1 ..... iN) 

A( i l  ..... i k ) -  A( i '  1 ,..., ik) 
= (B2) 

B(i  I ..... i ~ ) -  B(i] ..... ik) 
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Therefore we a s s u m e  i N = 1. Then  

A( i l , . . . ,  i N =  1) - -A( i '  1 ..... iN = 1) 

B( i l  ,.., i N = 1 ) -  B( i '  1 ,..., i N = 1) 

{ - - (gU+lO 1/cO'A( i l , . . .  , i N _ l ) "  [A(i',,..., i N 1)--A(i,,---, i N - l ) ]  

- -  ( 1 / 2 ) ( g u +  1 o 1/Cr iN 1)[A(i'1,-.-, iN_  1) 

- - A ( i a , . . . , i  N 1) ]2+  . . .  } 
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{ - ( g ~ 1 7 6  ..... iN l)[B(il,.--, i N - 1 ) - - B ( i , , . . . ,  iN 1)] 

- - (1 /2 ) (go  1/cO"B(i , , . . .  , i N 1)[B(i'1 ..... i N _ , )  

- - B ( i l  ..... iN 1) ]2+ " ' '} 

If (i ,  ..... i N - - 1 )  does not  have a long tail of zeros, this is 

(B3) 

A( i l , . . . ,  i u _  l ) - -  A(i ' ,  ..... i N _ i )  

B( i , , . . . ,  i N - ,) - -  B(i',  ,..., i N_  ,) 

//1 q- (1/2)(go 1/ot)"B(i  I , . . . ,  iN) 
X \ ( g o  1 / ~ ) ' B ( i  I ,..., iN) 

{ [ B ( i l  ..... iN) -- B(i'~ ..... iN)]  

- -  EA(il,---, i u ) - - A ( i ' l , . . . ,  iN)I} + 0 ( 6  N)) (B4) 

Otherwise, if ( i , , . . . ,  i N_ 1)= ( i , , . . - ,  i~ = 1, 0,..., 0), one expands a round  
x = 0 and finds 

(1/2) g"(0)(1/~ k-  ,)x{ [A( i l , . . . ,  ik)] 2 - EA(i' , , . . . ,  ik)] 2 } + O(6 -N)  + . . .  

(1/2) g"(0)(1/cr ~-  1)2{ [ B ( i l  ,..., ik)] 2 -- [B(i'I ,..., ik)] 2 } + ' "  

A ( i l  ..... i k ) -  A(i ' l , . . . ,  i~) ~A( i l , . . . ,  i~) + A(i ' l , . . . ,  ik) 

B( i l , . . . ,  ik)  B(z l  ..... i~) ( B ( i ,  ..... i k ) + B ( l l , . . .  , ik) 

X [-1 + 0((~ N)] + . ,  ,} (BS) 

Hence one may write 

-/ N 
A ( i l ' " "  i N ) - - A ( t 1 ' " "  i u ) ~  [ I  (1 +Xk) (B6) 
B ( i ,  ..... iN) -- B(i'~,..., iN) ~: =1 

where xk = 0 for ik = 0 and Ixk] ~ 11/cr ~ for i ,  = 1. When N tends to infinity, 
this gives an infinite product  with value of order  1. 

822/47/3-4-11 
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